
801;
cs,

p
H
d
t
p
i
r
t
H

u

Journal of Magnetic Resonance144,228–242 (2000)
doi:10.1006/jmre.2000.2055, available online at http://www.idealibrary.com on
Intensity of Cross-Peaks in Hyscore Spectra
of S 5 1/ 2, I 5 1/ 2 Spin Systems

Sergei A. Dikanov,*,†,1 Alexei M. Tyryshkin,†,‡ and Michael K. Bowman‡

* Illinois EPR Research Center and Department of Veterinary Clinical Medicine, University of Illinois at Urbana–Champaign, Urbana, Illinois 61
†Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk 630090, Russia; and‡Macromolecular Structure and Dynami

W. R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352

Received October 14, 1999; revised February 15, 2000
op
pe

lex
racts

cre-
ordi-

tly
and

ienta-

I ence
b the

f
ron-
HFI)
s of
does
y for
rum
m all
spect
nta-

n the
the

c-
es of

h

ofile
hown
HFI
diate
tions
bse-
m a

I med.
nov
The cross-peak intensity for a S 5 1/2, I 5 1/2 spin system in
two-dimensional HYSCORE spectra of single-crystals and pow-
ders is analyzed. There is a fundamental difference between these
two cases. For single crystals, the cross-peak intensity is distrib-
uted between the two (1, 1) and (1, 2) quadrants of the hyper-
fine sublevel correlation (HYSCORE) spectrum by the ratio c2:s2

(C. Gemperle, G. Aebli, A. Schweiger, and R. R. Ernst, J. Magn.
Reson. 88, 241 (1990)). However, for powder spectra another
factor becomes dominant and governs cross-peak intensities in the
two quadrants. This factor is the phase interference between mod-
ulation from different orientations of the paramagnetic species.
This can lead to essentially complete disappearance of the cross-
peak in one of the two (1, 1) or (1, 2) quadrants. In the (1, 1)
quadrant, cross-peaks oriented parallel to the main (positive) di-
agonal of the HYSCORE spectrum are suppressed, while the
opposite is true in the (1, 2) quadrant where cross-peaks nearly
perpendicular to the main (negative) diagonal of HYSCORE spec-
tra are suppressed. Analytical expressions are derived for the
cross-peak intensity profiles in powder HYSCORE spectra for
both axial and nonaxial hyperfine interactions (HFI). The inten-
sity is a product of two terms, one depending only on experimental
parameter (t) and the other only on the spin Hamiltonian. This
separation provides a rapid way to choose t for maximum cross-

eak intensity in a region of interest in the spectrum. For axial
FI, the Hamiltonian-dependent term has only one maximum and
ecreases to zero at the canonical orientations. For nonaxial HFI,
his term produces three separate ridges which outline the whole
owder lineshape. These three ridges have the majority of the

ntensity in the HYSCORE spectrum. The intensity profile of each
idge resembles that observed for axial HFI. Each ridge defines
wo principal values of the HFI similar to the ridges from an axial
FI. © 2000 Academic Press

Key Words: pulsed EPR; ESEEM; HYSCORE; lineshape;
intensity.

INTRODUCTION

HYSCORE (hyperfine sublevel correlation) spectrosc
based on the four-pulse two-dimensional (2D) ESEEM ex
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iment (1) finds increasing application in the study of comp
paramagnetic centers where the unpaired electron inte
with a number of magnetically nonequivalent nuclei (2–18).
The basic advantage of the HYSCORE technique is the
ation of correlation cross-peaks in 2D spectra whose co
nates are nuclear frequencies (6na, 6nb) from opposite elec-
tron spin manifolds (1, 19). The cross-peaks significan
simplify analysis of congested spectra by correlating
spreading out the nuclear frequencies.

We have demonstrated that another advantage of or
tionally disordered (powder) HYSCORE spectra ofS 5 1/ 2,

5 1/ 2 spin systems is the visualization of interdepend
etweenna and nb belonging to the same orientations in

form of the cross-peak contour projection (20). The analysis o
the contour allows direct determination of the (elect
nuclear) isotropic and anisotropic hyperfine interactions (
(12, 20). However, it is apparent from previous application
HYSCORE that complete understanding of its spectra
require insight into the cross-peak lineshapes, particularl
nonaxial HFI or when the anisotropy of the EPR spect
precludes the measurement of a HYSCORE spectrum fro
possible orientations of the paramagnetic centers with re
to the magnetic field. One should understand which orie
tions of the paramagnetic species produce singularities i
2D spectrum and how the intensity is distributed between
nonequivalent (1, 1) and (1, 2) quadrants of the 2D spe
trum. The present work explores the intensities and shap
cross-peaks in HYSCORE spectra forS 5 1/ 2, I 5 1/ 2 and
could be extended toS 5 1/ 2, I . 1/ 2 systems wit
negligible nuclear quadrupole interaction.

Both axial and nonaxial HFI are treated. The intensity pr
of cross-peaks in the powder spectrum is evaluated and s
to be “bell”-shaped with zero intensity at the canonical
orientations and with a single maximum at some interme
orientation. While nuclear frequencies at canonical orienta
are not directly observable, their determination (and su
quent evaluation of complete HFI tensor) is possible fro
linear fit of the cross-peak coordinates in ana

2 vs nb
2 plot (20).

n the case of nonaxial HFI, three separate ridges are for
@
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229INTENSITY OF CROSS-PEAKS IN HYSCORE SPECTRA
Each ridge indicates two of the three principal values of
HFI in the same manner as the ridges from an axial HFI. T
findings provide a basis for rapid interpretation of HYSCO
spectra.

THEORY

Intensity of Cross-Peaks in Single-Crystal
HYSCORE Spectra

A cross-peak in the HYSCORE spectra of aS 5 1/ 2, I 5
/ 2 electron-nuclear spin system is described in the
omain by (21, 22)

V~t1, t2! 5 k z sin~pnat! z sin~pnbt!

3 @c2cos 2p~nat1 1 nbt2 1 n1t / 2!

1 c2cos 2p~nat2 1 nbt1 1 n1t / 2!

2 s2cos 2p~nat1 2 nbt2 1 n2t / 2!

2 s2cos 2p~nat2 2 nbt1 1 n2t / 2!# [1]

in the limit of complete excitation and nonselective detec
wherena and nb are the nuclear (positive) frequencies fr
opposite electron spin manifolds, andn6 are their linear (na 6
nb) combinations;t, t 1, and t 2 are times between first a
second, second and third, and third and forth pulses, re
tively. The amplitude coefficient,k 5 4c2s2, is the product o
the formally allowed and forbidden EPR transition proba
ties, with

c2~s2! 5
un I

2 2 1
4 ~na 7 nb! 2u

nanb

, [2]

where n I is the nuclear Zeeman frequency. In Eq. [2], o
those values ofna andnb are allowed that satisfy the relatio

FIG. 1. Contour plot of cross-peak intensity (I 1
6 term) in single-crystal HY

coordinates (na/n I, nb/n I) of the cross-peak. Positive (na/n I) corresponds to
e
se

e

,

ec-

-

na 1 nb $ 2n I and una 2 nbu # 2n I, in order to provide
meaningfulc2(s2) # 1.

The two nuclear frequencies,na andnb, may produce fou
distinct cross-peaks in the HYSCORE spectrum. A pai
peaks (1na, 1nb) and (1nb, 1na) appears in the positiv
(1, 1) quadrant of 2D spectra and another pair (6na(b), 7nb(a))
in the other (1, 2) quadrant.

The intensity of a cross-peak can be written as

I na,nb

6 5 k z z2 z usin~pnat!sin~pnbt!u, [3]

wherez2 denotes eitherc2 for I na ,nb

1 in the (1, 1) quadrant o
2 for I na ,nb

2 in the (1, 2) quadrant. The cross-peaks in
(1, 1) and (1, 2) quadrants also have different phases,n1t/2
andn2t/2, respectively. However, HYSCORE spectra are-
ally represented in absolute Fourier transform mode, w
hides the phase information. Therefore, we will not discus
phases below.

It is convenient to consider the intensity as a product of
terms,

I na,nb

6 5 I 1
6~na/n I, nb/n I! z I 2~nat, nbt!, [4]

which are functions of dimensionless variables. The
term, I 1

6(n a/n I, n b/n I) 5 k z z2, describes the underlyin
intensity and depends only on the two nuclear frequen
(na/n I) and (nb/n I) expressed in terms of the Zeeman
quency. The second, time-dependent term,I 2(n at, n bt) 5
usin(pnat)sin(pnbt)u, is responsible for the blind spots
HYSCORE spectra and is a function of the dimension
parametersnat and nbt. Such a presentation eliminates
influence of the particular type of nucleus (n I) and the expe-
imental setup (t) on the properties of HYSCORE spectra.

The Hamiltonian-dependent termI 1
6 is directly determined

ORE spectrum forI 5 1/ 2. The intensityI 1
6 depends only on the dimensionl

(, 1) quadrant of the spectrum and negative (na/n I) to the (1, 2) quadrant

SC
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230 DIKANOV, TYRYSHKIN, AND BOWMAN
by the normalized cross-peak coordinates (na/n I, nb/n I). Figure
1 shows the variation of the cross-peak intensity in the (1, 1)
and (1, 2) quadrants. The maximum intensity of 16/27; 0.6

ccurs forc2 5 2/3 in the (1, 1) quadrant and forc2 5 1/3
in (1, 2) quadrant. The maximum intensities are observe

rather narrow range of frequencies. For instance, the
ntensity drops by half in the (1, 1) quadrant if either coo
inate is greater than 2. When either coordinate become.3

he intensity is less than 10%. Reasonable intensities i
1, 2) quadrant are found over a much broader range.
eaks in the (1, 2) quadrant reach a maximum intensity w
ither normalized frequency;2 and the intensity falls off mo
lowly, dropping by only half for either frequency;3.
This distribution of intensity between (1, 1) and (1, 2)

uadrants is governed by the ratioc2/s2 (21). Figure 2shows
he calculated ratio,I 1/I 2, in (na/n I, nb/n I) coordinates.I 1/I 2

is unity for c2 5 1/ 2, i.e., na
2 1 nb

2 5 4n I
2, which is a

quarter-circle (bold line in Fig. 2). The cross-peak intensi
greater in the (1, 1) quadrant forna

2 1 nb
2 , 4n I

2, but weake
for na

2 1 nb
2 . 4n I

2. Thus, a cross-peak withI 1/I 2 . 1 (or
I 1/I 2 , 1) would indicate a nucleus with 4n I

2 greater (or less
han na

2 1 nb
2. This provides a simple method for assign

cross-peaks to a particular type of nucleus according tn I.
Note that thet-dependent termI 2 is eliminated in the rati
I 1/I 2, so that the ratio is independent of the experime

FIG. 2. RatioI 1/I 2 of the cross-peak intensities in the (1, 1) and (1, 2) q
plot). The bold line represents (na/n I, nb/n I) where intensity of cross-peak is
line show the location in dimensionless coordinates (na/n I, nb/n I) for the thre
oincident (see text). The ratiosI 1/I 2 are indicated in parentheses for the
in
ak

he
e

s

al

conditions. This leads to another useful property of HYSCO
spectra.

If two nuclei of the same isotope but with different hyper
tensors, for instance, two nonequivalent protons, have acc
tally coincident frequencies (na

(1) 5 na
(2) and nb

(1) 5 nb
(2)), then

their cross-peak intensity ratios will be equal,I 1/I 2(n a
(1),

n b
(1)) 5 I 1/I 2(n a

(2), n b
(2)). This is true regardless of the act

hyperfine tensors or the number of equivalent nuclei as lo
the pairs of frequencies coincide. On the other hand, if
different isotopes (for instance,1H and 31P or 19F) have iden-
tical frequencies,na

(H) 5 na
(P) and nb

(H) 5 nb
(P), the cross-pea

intensity ratios will differ,I 1/I 2(n a
(H), n b

(H)) Þ I 1/I 2(n a
(P), n b

(P)).
This is because the cross-peaks, when scaled by the dif
nuclear Zeeman frequencies, map to different coordinate
the dimensionless plots (na/n I, nb/n I). This property is poten-
tially useful for assigning a cross-peak whose origin is am
uous. One can measure the intensity ratioI 1/I 2 of the cross
peak in the (1, 1) and (1, 2) quadrants in an experimen
spectrum and correlate that ratio to the dimensionless p
I 1/I 2 in Fig. 2. For instance,na

(H) 5 na
(F) 5 na

(P) 5 22.35 MHz
andnb

(H) 5 nb
(F) 5 nb

(P) 5 14.9 MHz will map to the filled circle
on Fig. 2 and give a ratioI 1/I 2 5 1.67 for1H (n I 5 14.9 MHz
at 350 mT),I 1/I 2 5 1.22 for 19F (n I 5 14.03 MHz), and
I 1/I 2 5 0.073 for31P (n I 5 6.04 MHz), which are sufficient

ifferent to identify the nucleus.

drants for a single-crystal HYSCORE spectrum ofI 5 1/ 2 (shown as a conto
al in the two quadrants, i.e.,I 1 5 I 2. The open circles lying on the dotted strai
agnetic nuclei (1H, 19F, 31P) whose actual frequency coordinates (na, nb) are

three nuclei.
ua
equ
e m
se
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231INTENSITY OF CROSS-PEAKS IN HYSCORE SPECTRA
Figure 3A displays the second, time-dependent term,I 2(n at,
n bt), as a function ofnat and nbt. When eithernat or nbt
equals an integer value, the cross-peak intensity falls to
an effect known as a blind-spot (23). The time, t, is an
adjustable parameter in a HYSCORE experiment, and v
of t corresponding to intensity maxima or minima for a pea
(na, nb) can be found from Fig. 3A. A straight line through
origin with a slope equal tona/nb traces out the relativ
cross-peak intensity as a function oft. If the difference be
tween the frequencies is small so that their ratio is near u
the maximum cross-peak intensity occurs close to the
maximum ofI 2(n at, n bt) at nat 5 nbt 5 0.5. As the differ-

nce between frequencies increases and their ratio de
rom unity, thet providing the maximum cross-peak intens
ncreases. Two examples of this strategy are presented i
B. Here the intensity profiles ofI 2 are shown along the dash

FIG. 3. Thet-suppression effect in HYSCORE: (A) Contour plot ofI 2 in
dimensionless coordinates (nat, nbt). (B) Intensity profileI 2 along the dashe
lines on plot (A) which correspond to cross-peaks withnb/na 5 7.0 and 1.27
Solid circles indicate a choice of optimalt for maximum cross-peak intensi
ro,

es
t

y,
st

tes

ig.

lines “a, b” of Fig. 3A. Forna/nb 5 1.27 (a), the maximum
ntensityI 2 5 0.97 isachieved at (nat 5 0.43,nbt 5 0.55), or
n It > 0.5. However, for a cross-peak with significantly diff-
ent frequencies and a higher rationa/nb 5 7 (b), one would us
a largert corresponding to the third or fourth maximum ofI 2,
(n at 5 0.36, n bt 5 2.5) or (nat 5 0.5, nbt 5 3.5).

ntensity of Cross-Peaks from Axial HFI in Powder
HYSCORE Spectra

For orientationally disordered samples, expression [1]
e integrated over the different orientations of the param
etic species. For axial HFI, the orientation is defined b
ingle angleu, relating the applied magnetic field direction

the principal axis of the HFI tensor. Writing the nuclear
quencies in the form

n a~b!
2 5 ~n ia~b!

2 2 n 'a~b!
2 ! z cos2u 1 n 'a~b!

2 [5]

emphasizes the unique mapping betweenna(b) and u. Here
nia(b) 5 u2n I 6 (a 1 2T)/ 2u andn 'a(b) 5 u2n I 6 (a 2 T)/ 2u
are the nuclear frequencies at the canonical orientations (u 5 0
or p/2) with the HFI described by its isotropic componenta)

nd anisotropic tensor (2T, 2T, 2T). In powder spectra, th
wo nuclear frequenciesna(b) vary in a correlated manner ov
the entire interval betweennia(b) and n'a(b). The one-to-on
mapping ofna(b) to u in Eq. [5] produces a unique mappi
betweenna andnb (20):

n a~b!
2 5 Qa~b!n b~a!

2 1 Ga~b!, [6]

with Qa(b) 5 (T 1 2a 7 4n I)/(T 1 2a 6 4n I) andGa(b) 5
62n I(4n I

2 2 a2 1 2T2 2 aT)/(T 1 2a 6 4n I), defining the
footprint or contour lineshape of the cross-peak in the
spectrum. Equation [6] shows that the cross-peak co
forms a smooth arc in powder 2D spectra between (unia(b)u,
unib(a)u) and (un'a(b)u, un'b(a)u). If Qa(b) , 0, the contour is
portion of an ellipse (circle ifQa(b) 5 21) with its origin at (0

). If Qa(b) . 0, the contour is a hyperbolic segment. W
plotted against coordinatesna

2 and nb
2, the contours becom

straight-line segments whose slope and intercept allow d
estimation ofQa(b) andGa(b) and subsequently the isotropic (a)
and anisotropic (T) HFI parameters (12, 20). Alternatively, the
points where the straight-line segment intersects the c
una 6 nbu 5 2n I are (unia(b)u, unib(a)u) and (un'a(b)u, un'b(a)u), from
which one can determine the hyperfine tensor (12).

Our aim is now to describe the variation of intensity al
he contour arc. We start with the relation between the spe
ensitySna ,nb

and the angular intensity distributionI (u ) in a
andom powder:

Sna,nb
z dnc 5 I ~u ! z sin u z du,

or, equivalently,Sna ,nb
5 I (u ) z sin u z udu/dn cu, wheredn c 5
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232 DIKANOV, TYRYSHKIN, AND BOWMAN
du z [(dn a/du ) 1 (dn b/du ) ] is an element of the cros
peak arc.I (u ) 5 I na ,nb

6 (u ) is the cross-peak intensity from E
[4] with the explicit dependence on orientationu, and sinu is
the statistical factor that accounts for the fact that more o
tations haveu ; p/2 thanu ; 0. Calculating the derivative

udna~b!/duu 5 un ia~b!
2 2 n 'a~b!

2 usin u cosu/na~b!,

ne obtains

sin u z udu/dncu

5
nanb

cosu z Î~n ia
2 2 n 'a

2 ! 2 z n b
2 1 ~n ib

2 2 n 'b
2 ! 2 z n a

2 .

sing n ia(b) 2 n 'a(b) 5 63/ 2 T, the intensity profile of th
powder cross-peak becomes

Sna,nb

6 5 I 1
6~na/n I, nb/n I! z I 2~nat, nbt!

3 I 3~na,nbun I, a, T!, [7]

where an additional term appears compared to the si
crystal result [4]:

I 3~na, nb; n I, a, T!

5
nanb

3/ 2uTu z cosu z Î~n ia 1 n'a! 2 z n b
2 1 ~n ib 1 n'b! 2 z n a

2 .

[8]

Equations [7] and [8] describe the intensity at (na, nb) along the
op of the powder cross-peak ridge produced by the HFI
he termI 3 has singularities for cosu 5 0 andT 5 0 which

are never observable because they occur whereI 1
6 5 0.

To eliminate the apparent singularities ofI 3, we rewrite Eq
[7] in the following form:

Sna,nb

6 5 I 13
6 ~na, nb; n I, a, T! z I 2~nat, nbt!, [9]

ith

I 13
6 ~na, nb; n I, a, T! ; I 1

6 z I 3

5
6uTu z n I

2z2cosu z sin2u

nanbÎ~n ia 1 n'a! 2n b
2 1 ~n ib 1 n'b! 2n a

2 , [10]

andz2 [ c2(s2) defined in Eq. [2]. The productI 13
6 describe

the “blind-spot-free” intensity of the powder cross-peak.
merical simulations show that for all reasonable sets of
parameters (ua/n Iu # 5, uT/n Iu # 5) the cross-peaks have
smooth shape with a single maximum and intensity decre
n-

le-

].

-
I

ng

to zero at the canonical orientations (see examples on Fig
and 8B). Such a bell shape is easily understood as deter
mainly by the numerator term cosu z sin2u in Eq. [10].

It is difficult to optimize t for maximum intensityI 2(t)
along the entire powder cross-peak. The variation ofI 2 along a
ross-peak ridge for an arbitrary HFI is illustrated in Fig.
here the same cross-peak is scaled for small (a) and lar
alues oft. The two values are chosen for maximum inten

at the right or left end of the powder cross-peak. Figure
shows the intensity profile ofI 2 along the two ridges (a) an
(b). The largertb produces a very distorted shape with cro
peak intensity completely suppressed at two different po
On the other hand, much of the intensity is lost near one o
edges of the cross-peak for the smallerta. This example
demonstrates the necessity for 2D experiments to use s
distinct t to enhance different regions of the extended pow

FIG. 4. Thet-suppression effect in powder HYSCORE: (A) A powder
idge of the same arbitrary cross-peak is schematically represented (bold
or small and larget values on a contour plot ofI 2 in dimensionless coordina
(nat, nbt). (B) Intensity profileI 2 along the powder cross-peak ridge for sm
and larget.
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233INTENSITY OF CROSS-PEAKS IN HYSCORE SPECTRA
cross-peak. Cross-peaks from spectra at differentt can be
assigned to the same HFI by overlaying spectra plotted inna

2 vs
nb

2 coordinates (12). This procedure reconstructs the blind-sp
free contour. The optimalt for any particular point along th

owder cross-peak remains the same as for single-c
YSCORE spectra (Fig. 3).
Our final step, however, is to analyze how the practica

f data collection modify the features of HYSCORE spe
hat are formulated above.

nterference Effects in Powder HYSCORE Spectra

HYSCORE spectra are obtained by absolute mode Fo
ransformation of experimentally collected time-domain d
nterference effects are often encountered when experim
bservables are derived in such a fashion. An example
lose to this subject is the spin-echo phenomenon. Spin
ts, precessing at different frequencies owing to inhom
eous broadening, yield an observable signal, either imm
tely after a single excitation pulse in the form of an FID o
n echo when their phases are “refocused” by addit
ulses. There is no observable signal at all other times, be
ach spin packet precesses with its own frequency, an

otal magnetization from the ensemble of spin packets
ifferent phases is vanishingly small on account of their in

erence. It has not been widely appreciated that signals
aramagnetic species with different orientations can inte
ith each other in powder HYSCORE and alter the obse
pectral intensity.
Equation [1] for 2D HYSCORE of anI 5 1/ 2 nucleus ca

be conveniently rewritten in the form

V~t1, t2! } ^c2 z ~e2i z2p~nat11nbt21~na1nb!t / 2!

1 e2i z2p~nat21nbt11~na1nb!t / 2! 1 c.c.!

2 s2 z ~e2i z2p~nat12nbt21~na2nb!t / 2!

1 e2i z2p~nat22nbt11~na2nb!t / 2! 1 c.c.!&V, [11]

where c.c. indicates the complex conjugate of the prev
terms, and̂..&V the powder average over different orientati
V of the external magnetic field. One can consider only the
terme2i z2p(na t11nb t21(na 1nb )t / 2) of Eq. [11] without loss of gene-
ality, because each term produces a distinct peak that n
theless is subject to similar considerations.

The first term corresponds to cross-peak (1na, 1nb). Both
na(b)(V) vary onV producing an extended cross-peak ridg
the powder spectrum whose profile is described by Eq.
Importantly, not only the magnitudec2 but also the phase

ph~V, t1, t2! 5 na~V!t1 1 nb~V!t2

1 ~na~V! 1 nb~V!!t / 2 [12]

varies for each set of (na(V), nb(V)). Because of differen
-

tal

s
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phases, the spin packetsV summed at the time point (t 1, t 2)
destructively interfere with each other in the sum̂c2 z
e2i z2p(na t11nb t21(na 1nb )t / 2)&V. It will be shown below that modu-
lation intensity in the time domain vanishes except at (t 1, t 2)
points where spin packets arrive with essentially the s
phase, i.e., ph(V, t 1, t 2) [ ph(t 1, t 2) independent onV. At
these time points, the packets are accumulated “in-phase
produce the maximum modulation amplitude for^c2 z
e2i z2p(na t11nb t21(na 1nb )t / 2)&V.

For simplicity, we shall assume a local linear relations
betweenna andnb at every orientationV. That is, we expan
na as a Taylor series innb and retain only the leading term

na~V! 5 b1 z nb~V! 1 b0. [13]

This assumption is allowed because the powder cross
ridge is only weakly curved [6]. Substitution of [13] into [1
gives

nb~V! z @b1t1 1 t2 1 ~b1 1 1!t / 2#

1 b0~t1 1 t / 2! ; ph~t1, t2!,

which is true for allnb(V) when

b1t1 1 t2 1 ~b1 1 1!t / 2 5 0. [14]

Equations [13] and [14] establish the relationship betwee
frequency domain and time domain in the powder HYSCO
spectra. Each linear segment [13] of a cross-peak in the “i
frequency domain produces a signal along a straight line
in the time domain.

Figure 5 illustrates this consideration. Here “idealized”
spectra (left) are constructed from a segment of the po
cross-peak (na, nb) approximated by a straight line [13] (t
coefficientsb1 and b0 are in the figure legend). The mirr
cross-peaks (nb, na) and (2na(b), 2nb(a)) corresponding to th
other terms of Eq. [11] are also added. On the right side of
5, the corresponding idealized time domains are shown c
lated by the inverse Fourier transformation. The time-dom
intensity is concentrated along two crossed lines. One of
lines is described by [14], and the second line correspon
the exchange oft 1 and t 2:

b1t2 1 t1 1 ~b1 1 1!t / 2 5 0 [15]

from the mirror cross-peak (nb, na). The signal is rapidl
attenuated away from the lines [14, 15]. The more distantt 1,
t 2)-point from the lines, the stronger the suppression. Qu-
atively, the width of the in-phase lines in the time domai
nversely related to the length of the cross-peak in the
uency spectrum;1/[(na' 2 nai)

2 1 (nb' 2 nbi)
2] 1/2. The

modulation intensity decays along the in-phase lines a
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234 DIKANOV, TYRYSHKIN, AND BOWMAN
inverse of the cross-peak width in the spectrum. Thus
recover the idealized spectrum, it is necessary and suffici
measure just the lines in the time domain.

The four pairs of frequency and time-domains shown in
5 represent the four different powder cross-peak orienta
which are typical in a 2D spectra (2–19). In Fig. 5A, the
ross-peaks are located in the (1, 1) and (2, 2) quadrants an
heir orientation is roughly perpendicular to the main (posit
iagonal of the 2D spectrum (b1 , 0). The correspondin

time-domain signal (Fig. 5A, right) appears in the (1t 1, 1t 2)
and (2t 1, 2t 2) quadrants as two lines in accordance with E
[14] and [15]. In Fig. 5B, the cross-peaks are still in the (1, 1)

FIG. 5. Interference effects in the powder HYSCORE. The time-dom
of the corresponding frequency-domain spectra (left). Only the light area1t 1

situations for powder cross-peaks in the 2D spectrum (see Eq. [13]): (A)b0, b
to
to

.
ns

)

.

nd (2, 2) quadrants but now are nearly parallel to the m
iagonal (b1 . 0). The change of orientation leads to

relocation of the straight lines to the (6t 1, 7t 2) quadrants i
the time domain. The idealized time domains in Fig. 5 ex
over both positive and negative timest 1(2). However, only th
upper right quadrant of the time-domain pattern, (t 1 . 0, t 2 .
0), has a physical meaning and is measurable in an exper
The other three quadrants (shaded in Fig. 5) are eter
inaccessible. It becomes clear that cross-peaks of nearl
allel orientation (Fig. 5B) should be strongly suppressed in
spectra because their signals fall predominantly in the un
surable (6t 1, 7t 2) quadrants, and only shallow traces leak

plots (right side of each pair) were obtained by direct inverse Fourier tran
t 2) in the time domain is measurable in the experiment. (A–D) Four diffe
5 (10.27,20.7), (B) (10.2,10.7), (C) (10.41,20.7), (D) (10.22,10.3).
ain
(, 1
(1)
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235INTENSITY OF CROSS-PEAKS IN HYSCORE SPECTRA
the (1t 1, 1t 2) quadrant. On the other hand, cross-peaks
erpendicular orientation (Fig. 5A) are readily detectable
Opposite results are found for cross-peaks in the (6, 7)

uadrants of the 2D spectra (Figs. 5C and 5D). Considerin
erm ^e2i z2p(na t12nb t21(na 2nb )t / 2)&V and taking the same line
relationship [13] betweenna(b) frequencies, one arrives at tw
straight lines in the time domain:

b1t1 2 t2 1 ~b1 2 1!t / 2 5 0,

b1t2 2 t1 1 ~b1 2 1!t / 2 5 0. [16]

n contrast to the (6, 6) cross-peaks considered above, n

FIG. 5—
h

he

he b1 . 0 orientations dominate experimental spectra,
b1 , 0 cross-peaks are suppressed (Figs. 5C and 5D)
influence of interference on cross-peak intensity in pow
HYSCORE spectra is summarized in Table 1.

Generalization of the straight-line approximation to the
cross-peak shapes [6] is straightforward. Since each cross
is a smooth arc, every local segment can be approxim
piecewise by a linear relation with slopeb1(u ):

b1~u ! 5
dna

dnb

~u ! 5 Qa z nb/na.

The frequenciesna(b) are by convention positive values, the-

ntinued
Co
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236 DIKANOV, TYRYSHKIN, AND BOWMAN
fore the sign ofb1(u ) is solely determined by the termQa 5
(T 1 2a 2 4n I)/(T 1 2a 1 4n I). Although the magnitud
varies,b1(u ) retains its sign along the entire cross-peak, f
u 5 0 to p/2. Hence,Qa is the only parameter that determin
cross-peak appearance in a 2D spectrum. Figure 6A show
regions ofQa . 0 andQa , 0 in the coordinates (T/n I, a/n I).
For the crosshatched region,Qa , 0 and henceb1(u ) , 0 for
all the (Du)u-segments of the entire cross-peak. In accord
with Table 1, each (Du)u-segment and thus the entire cro
peak produced by the nucleus with hyperfine parameters
this region will be observed in the (1, 1) quadrant an
upressed in (1, 2). For HFI parameters from the dott
egions,Qa . 0 andb1(u ) . 0, and the cross-peak beha

in the opposite fashion. Figure 6B shows a similar plot
single-crystal HYSCORE spectra where the intensity is dis
uted according to thec2:s2 rule: for smaller hyperfine intera-
tions the greater intensity is found in the (1, 1) quadrant bu
or larger interactions the intensity found in the (1, 2) quad-
ant. While thec2:s2 ratio is still relevant in the powder cas

interference effects become the dominating factor and
completely suppress the cross-peak intensity in one of th1,

) or (1, 2) quadrants, regardless of the actualc2:s2 ratio.
Figure 7A presents a single-crystal HYSCORE spec

calculated forn I 5 1 MHz, a 5 2 MHz, T 5 22 MHz, and
u 5 65° (the parameters are marked with solid circles in F
6A and 6B). As predicted, the ratioI 1 , I 2 is observed in th
spectrum, following the theoreticalc2:s2 5 0.256. Single-
crystal simulations for other orientationsu followed the sam
elationshipI 1 , I 2. The powder spectrum simulated with
ame parameters (Fig. 7B) has, however, the opposite int
atio I 1 . I 2. The intensityI 2 vanishes in powder spectru

due to interference, and only a few weak features ca
discovered.

We have not been able to explicitly derive the interfere
term I 4 that would describe the cross-peak intensity in

Sna,nb

6 5 I 13
6 ~na, nb; n I, a, T! z I 2~nat, nbt! z I 4~Qa~b!!.

[17]

However, interference effects can be approximated by a
function, equal to 1 or 0 depending on the sign ofQa(b):

TABLE 1
Influence of Powder Interference Effects on Cross-Peak

Appearance in 2D HYSCORE Spectra

Cross-peak
allocation

b1 . 0
(Qa . 0)

b1 , 0
(Qa , 0)

b1 ' 0 or
b1 3 `

(1, 1) Quadrant Suppressed Allowed Strongly affec
(1, 2) Quadrant Allowed Suppressed Strongly affec
the

ce
-
m

r
-

an

m

s.

ity

be

e

ep

I 4~Qa~b!!

5 5
1 ~1, 1! cross-peak withQa~b! , 0, and

~1, 2! cross-peak withQa~b! . 0
0 ~1, 1! cross-peak withQa~b! . 0, and

~1, 2! cross-peak withQa~b! , 0.

[18]

This completely suppresses the cross-peak intensity in
quadrant (I 4(Qa) 5 0) but leaves the intensity unaffected
he other (I 4(Qa) 5 1). Simulations in Fig. 8illustrate the
pproximation. The cross-peak intensity (solid) taken
kyline projection of simulated HYSCORE spectra is c

FIG. 6. (A) Graphic presentation of the cross-peak appearance in p
HYSCORE spectra (“Qa . 0 andQa , 0” rule). For the parameters (T/n I,
a/n I) of the central (crosshatched) region (Qa , 0), the cross-peak is on
detected in the (1, 1) quadrant, and for the parameters of the dotted re
(Qa . 0) the cross-peak intensity is only observed in the (1, 2) quadrant. (B
Graphic presentation of the cross-peak intensity allocation in single-c
HYSCORE spectrum (“c2:s2” rule). For hyperfine parameters (T/n I, a/n I) in
the central (crosshatched) region, the most cross-peak intensity lies in t1,
1) quadrant of 2D spectra, i.e.,I 1 . I 2 for any orientationu of the axial HF
tensor relative to the external magnetic field. The reverse (I 1 , I 2) is true fo
hyperfine parameters in the dotted regions. Unmarked regions repres
parameters for which ratio of the cross-peak intensity in the (1, 1) or (1, 2)
quadrant varies withu. The parameters used in the simulations of Figs. 7
and 8B are marked with solid circles on the graphs.
o

g

I
r

,
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237INTENSITY OF CROSS-PEAKS IN HYSCORE SPECTRA
pared to the idealized interference-free intensity predicted
[10] (dashed lines). The intensitiesI 1 in Fig. 8A andI 2 in Fig.
8B are well reproduced, so thatI 4(Qa) 5 1 would be a goo
approximation. But only a few weak features are seen in
region of the strongly suppressed lines in the opposite q
rants,I 2 in Fig. 8A andI 1 in Fig. 8B. These features cor-
pond to nuclear frequenciesn'a(b) near the perpendicul

orientation of the magnetic field, which are the only o
remaining from the entire powder cross-peak. The effec
sembles that described for the dead time distortion of
powder lineshapes in 1D ESEEM spectra (24).

Two special cases,b1 ' 0 andb1 3 `, mark the bound-
aries in the approximation [18]. These are known as th
singularity in 1D ESEEM spectroscopy whereunia(b)u5un'a(b)u

nd eitherna or nb is orientation independent. Withb1 ' 0

FIG. 7. Single-crystal (A) and powder (B) HYSCORE spectra fromI
2 MHz) marked with solid circles on the graphs in Figs. 6A and 6B. A

s assumed in the single-crystal simulation.
th

e
d-

s
e-
e

S-

(b1 3 `), one of the lines [14], [15], or [16] in the tim
domain lies nearly on thet 1 axis and the other on thet 2 axis.
Considering that the (1t 1, 1t 2) quadrant is the only on
observable in the experiment, it becomes clear that the c
peak intensity in both the (1, 1) and the (1, 2) quadrants wil
be affected near these special cases. For finitet, the pairs o
lines [14], [15], or [16] intersect at negative times (t 1 5 2t / 2,

2 5 2t / 2), Fig. 9,and the measurable portion of signal in
(1t 1, 1t 2) quadrant is partially or totally lost. One can th
of the t-shift as an additional dead time (t dead 5 t/2) in both
dimensions.

Interference is not specific to theS 5 1/ 2, I 5 1/ 2 system
but is a general feature of 2D spectra from nuclei of arbit
spin. The HYSCORE spectrum from nuclear spinI can be
generally described by (25)

1/ 2 nucleus with the hyperfine parameters (n I 5 1 MHz, a 5 2 MHz, T 5
rientation,u 5 65°, for the axial HFI tensor relative to the external magnetic
an5
n o



simulated

f due

t

238 DIKANOV, TYRYSHKIN, AND BOWMAN
FIG. 8. Comparison of theoretical profiles for the powder cross-peaks calculated analytically using [10] (dashed lines) with sky-line profiles in
HYSCORE spectra (solid lines). The parameters wereI 5 1/ 2, n I 5 1 MHz, (A) a 5 2 MHz, T 5 22 MHz, (B) a 5 2 MHz, T 5 1 MHz. The positive
requency corresponds to cross-peak intensity in (1, 1) quadrant and negative in (1, 2) quadrant. The spike at 1.73 MHz in the intensity profile (A) is
to the intersection of the two cross-peak ridges.
negative
FIG. 9. Thet-shift effect in powder HYSCORE experiment. The two straight lines of maximum modulation signal ([14], [15], or [16]) are shifted to
imes on (B) to make an intersection at (t 1 5 2t / 2, t 2 5 2t / 2). Only the light area (1t 1, 1t 2) is detectable in HYSCORE experiments.



nci
as

th
s.
rg

the
d i

e
ly i
tion

n.

tio
e
,

ca
n

the

ct and
lari-
one

ipal
der-
ions

t
al

h of

l HFI

HFI
21].
tense
d by

cleus
omi-
shape
both

a lt in

s

can

m
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V~t1, t2!

} 7
¥ i , j ~ki , je

2i z2p~nai t11nbj t21~nai1nbj!t / 2!

1 k*i , je
2i z2p~nai t21nbj t11~nai1nbj!t / 2! 1 c.c.

1 ~l i , je
2i z2p~nai t12nbj t21~nai2nbj!t / 2!

1 l *i , je
2i z2p~nai t22nbj t11~nai2nbj!t / 2! 1 c.c.

8
V

,

where the sum is taken over the different nuclear freque
n ai andn bj from opposite electron spin manifolds. In contr
to theI 5 1/ 2 case [11], the amplitude coefficientski , j(l i , j) are
complex values with initial phases ph(ki , j) and ph(l i , j) which
influence the time-domain signal:

ph~V, t1, t2! 5 nai~V!t1 1 nbj~V!t2

1 ~nai~V! 1 nbj~V!!t / 2 1 ph~k~l ! i , j!.

In the linear segment approximation,n ai(V) 5 b1 z n bj(V) 1
b0, the time-domain signals have the same phase at

b1t1 1 t2 1 ~b1 1 1!t / 2 1 ph~k~l ! i , j!/nb~V! 5 0. [19]

which differs from theI 5 1/ 2 case [14] by ph(k(l ) i , j)/n b(V).
The latter term is orientation dependent and therefore
location the observable time-domain signals is not obviou
is clear, however, that this term becomes negligible at la
timest 1(2) so that [19] approaches the straight line,b1t 1 1 t 2 1
const5 0, similar to [14]. Therefore, one would expect that
lines of maximum intensity in the time domain are locate
the same manner as in theI 5 1/ 2 case and the sam
qualitative description of interference effects should app
the frequency domain (see Table 1). Numerical simula
and experimental HYSCORE spectra fromI 5 1 (3, 9, 13), 3/2
(14, 15), and 5/2 (7) nuclei support this qualitative conclusio

Cross-Peak Intensity in the Case of Nonaxial HFI

Nuclear frequencies for a nonaxial hyperfine interac
depend on the polar (u) and azimuthal (w) angles that relate th
magnetic field orientation to the HFI principal axis system

n a~b!
2 5 n za~b!

2 cos2u 1 n ya~b!
2 sin2u z sin2w

1 n xa~b!
2 sin2u z cos2w

5 n za~b!
2 cos2u 1

n xa~b!
2 1 n ya~b!

2

2
z sin2u

1
n xa~b!

2 2 n ya~b!
2

2
z sin2u z cos 2w, [20]

where n za(b) 5 2n I 6 (a 1 2T)/ 2 and n x( y)a(b) 5 2n I 6
(a 2 T(1 6 d))/ 2 are nuclear frequencies at the

onical orientations of the HFI tensor [2T(1 1 d),
2T(1 2 d), 12T].
es
t

e
It
er

n

n
s

n

-

The general relationSna ,nb
z dn a z dn b 5 I (u, w) z sin u z

du z dw for cross-peak intensity can be written using
Jacobian form,

Sna,nb
5 I ~u, w! z sin u z U ~u, w!

~na, nb
U , with

U ~u, w!

~na, nb!
U 5 *

na

u

nb

u
na

w

nb

w
*

21

.

Thus one obtains

Sna,nb

6 5
n I z z2~d 2sin22w 1 ~3 1 d cos 2w! 2cos2u !

d z T z ~9 2 d 2! z nanb z sin w z cosw z cosu

3 I 2~nat, nbt!, [21]

where again the second term describes the blind-spot effe
is omitted in further discussion. There are apparent singu
ties in the cross-peak shape in Eq. [21]. They occur when
of the following conditions is met: sinw 5 0, cosw 5 0, or cos
u 5 0, that is for the magnetic field perpendicular to a princ
axis of the HFI tensor. The singularities can be easily un
stood from the second form of Eq. [20]. For those orientat
with the same angleu, both na

2 and nb
2 vary as cos 2w. Thus,

w 5 0 andw 5 p/2 are stationary points forna andnb so tha
many orientations have cos 2w ' 61 and contribute to spectr
intensity at the extreme value ofna andnb, for that value ofu.
Similar turning points occur along the entire length of eac
the three boundary arcs for the cross-peak.

The powder cross-peaks have a horn shape for nonaxia
(20). The three arcs corresponding to sinw 5 0, cosw 5 0, and
cosu 5 0 bound the range of possible frequencies for that
and are also the conditions for the singularities in Eq. [
Therefore, one expects the outlines to be the most in
features in the spectrum. The outlining arcs are describe
Eq. [7] with a different definition for theQa(b) and Ga(b)

parameters (Table 2).
Figure 10 shows two spectra, each simulated for one nu

with nonaxial HFI tensor. As expected, the spectra are d
nated by the three separate arcs outlining the entire horn
of the powder cross-peak (shaded). A significant aspect of
spectra is the distribution of the arc ridges between the (1, 1)

nd (1, 2) quadrants. The powder interference effects resu
only ridges with negative values forQa(b)

zx , Qa(b)
zy , or Qa(b)

xy

(Table 2) appearing in the (1, 1) quadrant and only ridge
with positive values appearing in the (1, 2) quadrant.

The intensity profile along each outlining cross-peak arc
be obtained from Eq. [21] by substituting sinw 5 0, cosw 5
0, or cosu 5 0. The singularity term is transformed fro
angular to frequency coordinates as
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1

usin wu 5
1

ÎDn
z

În Id~3 2 d! z T sin u

@~nzb 1 nxb! 2n a
2 1 ~nza 1 nxa! 2n b

2# 0.25 ,

1

ucoswu 5
1

ÎDn
z

În Id~3 1 d! z T sin u

@~nzb 1 nyb! 2n a
2 1 ~nza 1 nya! 2n b

2# 0.25 ,

1

ucosuu 5
1

ÎDn
z

În I~9 2 d 2!/ 2 z T

@~nxb 1 nyb! 2n a
2 1 ~nxa 1 nya! 2n b

2# 0.25 ,

[22]

here 1/=Dn would result from integration of the square-r
singularity when some homogeneous broadening of the
vidual spectral components is introduced;Dn can vary acros
the spectrum depending on the precise nature of the broad
but will be assumed to be constant for the purpose of dis
sion. Substituting [22] into [21], one derives the inten
profiles along the length of the outlining ridges:

Sna,nb

6 5
1

ÎDn
z I 13

6 ~na, nb; n I, a, T, d!

3 I 2~nat, nbt! z I 4~Qa~b!!, [23]

hereI 2 and I 4 are the blind-spot and interference terms,
13
6 is “true” intensity shape. The latter are collected in Tab

for each of the outlining ridges.
All three edges have smooth shapes similar to those f

for axial HFI [10]. The arc has a single maximum along
length and falls to zero at the canonical orientations. Bec
each of the outlining ridges has an intensity profile simila
that for the axial HFI case, which is described by Eq. [7], t
one nonaxial nucleus produces a cross-peak pattern c

TAB
Arc Shape and Intensity Profiles for the Outlining A

in HYSCORE Spect

Powder arc
(singularity) Arc shape,n a(b)

2 5 Qa(b)n b(a)
2 1

xial HFI Qa~b! 5 2
n ia~b! 1 n'a~b!

n ib~a! 1 n'b~a!
Ga~b! 5 22n

Nonaxial HFI

ZX-plane (sinw 5 0) Qa~b!
zx 5 2

nza~b! 1 nxa~b!

nzb~a! 1 nxb~a!
Ga~b!

zx 5 22

ZY-plane (cosw 5 0) Qa~b!
zy 5 2

nza~b! 1 nya~b!

nzb~a! 1 nyb~a!
Ga~b!

zy 5 22

XY-plane (cosu 5 0) Qa~b!
xy 5 2

nxa~b! 1 nya~b!

nxb~a! 1 nyb~a!
Ga~b!

xy 5 22
i-

ing
s-

d
2

nd

se
o
n
ely

resembling what would result from three (nonequivalent) a
nuclei having principal values in common with each othe
addition, the powder interference effects will distribute eac
the three outlining ridges between the two quadrants of th
spectra (Fig. 10) to further complicate interpretation. Howe
in ana

2 vsnb
2 plot, the ridges become straight lines (20) and eac

pair of oulining ridges should intersect atuna 6 nbu 5 2n I. This
is the most direct indication for the ridges produced by a s
nucleus with nonaxial HFI.

We now consider the relative intensities of the three rid
of nonaxial cross-peaks. If the hyperfine interaction is wean I

. uau, uTu), thenc2 ' 1 ands2 ' 0 for all three ridges, an
they appear mainly in the (1, 1) quadrant. The denominato
in I 13

6 have roughly the same magnitude for all ridges. A
result, the relative intensities of the ridges are determ
solely by the rhombic parameter:

Szx:Szy:Sxy 5 ~3 1 d! 3/ 2:~3 2 d! 3/ 2:~2d! 3/ 2, [24]

and vary from 1:1:0 for nearly axial HFI (d ' 0) to 2.8:1:1 fo
a purely rhombic hyperfine interaction (d 5 1). The same ratio

re obtained for the case of strong isotropic HFI couplinguau
n I, uTu); however, all ridges appear in the (1, 2) quadran

c2 ' 0 ands2 ' 1).

CONCLUSIONS

The analysis presented here extends the theoretical trea
of cross-peaks in powder HYSCORE spectra ofI 5 1/ 2

ucleus started previously (12, 20). Cross-peaks form we
defined ridges (arcs and horns) in 2D spectra which a
accurate estimation of isotropic and anisotropic hyperfine

2
of Powder Cross-Peak in the Case of Nonaxial HFI
or S 5 1/2, I 5 1/2

(b)

“Ideal” intensity profile along the arc,I 13
6

(z2 [ c2(s2) and defined in [2])

ian'b 1 n ibn'a

n ib~a! 1 n'b~a!

6uTu z n I
2z2cosu z sin2u

nanbÎ~n ia 1 n'a! 2n b
2 1 ~n ib

2 1 n 'b
2 ! 2n a

2 ,

wherena(b)
2 5 n ia(b)

2 cos2 u 1 n 'a(b)
2 sin2u

nzanxb 1 nzbnxa

nzb~a! 1 nxb~a!

n I
3/2 z z2 z sin 2u

Î4 n a
2~nzb 1 nxb! 2 1 n b

2~nza 1 nxa! 2
z

3 1 d

Î4d~3 2 d!
,

wheren a(b)
2 5 n za(b)

2 cos2u 1 n xa(b)
2 sin2u

nzanyb 1 nzbnya

nzb~a! 1 nyb~a!

n I
3/2 z z2 z sin 2u

Î4 n a
2~nzb 1 nyb! 2 1 n b

2~nza 1 nya! 2
z

3 2 d

Î4d~3 1 d!
,

wheren a(b)
2 5 n za(b)

2 cos2u 1 n ya(b)
2 sin2u

nxanyb 1 nxbnya

nxb~a! 1 nyb~a!

n I
3/2 z z2 z sin 2w

Î4 n a
2~nxb 1 nyb! 2 1 n b

2~nxa 1 nya! 2
z

2d

Î2~9 2 d 2!
,

wheren a(b)
2 5 n xa(b)

2 cos2w 1 n ya(b)
2 sin2w
LE
rcs
ra f

Ga

I z
n

n I z

n I z

n I z
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241INTENSITY OF CROSS-PEAKS IN HYSCORE SPECTRA
rameters. In the present work we concentrate on the inten
and shapes of those ridges. A new feature of powde
spectra, the suppression of some ridges by interference e
was discovered. Interference leads to suppression in one
(1, 1) or (1, 2) quadrants of 2D spectra depending on

rientation of the cross-peak relative to the spectral axes.
s a fundamental difference with respect to single-crystal
nted) systems where cross-peaks appear in both quad
etermined solely by the ratioc2:s2. The intensity profile alon

the powder cross-peak, in the case of axial hyperfine int
tion, is a bell-type shape with a single maximum and with
intensity at the canonical (i and') orientations of the magne
eld. Nonaxial hyperfine interaction produces three sep
rc ridges corresponding to orientations of the magnetic
erpendicular to each of the principal axes of the nonaxial

ensor. Only these canonical ridges are observable in the

FIG. 10. Simulated powder HYSCORE spectra from anI 5 1/ 2 with no
1 MHz, a 5 1.5 MHz, T 5 20.75 MHz, d 5 1.
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e
is

i-
nts,
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ra and outline the whole horn shapes predicted for non
FI. These ridges provide a convenient basis for rapidly e
ating the entire hyperfine tensor.
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