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The cross-peak intensity for a S = 1/2, | = 1/2 spin system in
two-dimensional HYSCORE spectra of single-crystals and pow-
ders is analyzed. There is a fundamental difference between these
two cases. For single crystals, the cross-peak intensity is distrib-
uted between the two (+, +) and (+, —) quadrants of the hyper-
fine sublevel correlation (HYSCORE) spectrum by the ratio ¢?:s?
(C. Gemperle, G. Aebli, A. Schweiger, and R. R. Ernst, J. Magn.
Reson. 88, 241 (1990)). However, for powder spectra another
factor becomes dominant and governs cross-peak intensities in the
two quadrants. This factor is the phase interference between mod-
ulation from different orientations of the paramagnetic species.
This can lead to essentially complete disappearance of the cross-
peak in one of the two (+, +) or (+, —) quadrants. In the (+, +)
quadrant, cross-peaks oriented parallel to the main (positive) di-
agonal of the HYSCORE spectrum are suppressed, while the
opposite is true in the (+, —) quadrant where cross-peaks nearly
perpendicular to the main (negative) diagonal of HYSCORE spec-
tra are suppressed. Analytical expressions are derived for the
cross-peak intensity profiles in powder HYSCORE spectra for
both axial and nonaxial hyperfine interactions (HFI). The inten-
sity is a product of two terms, one depending only on experimental
parameter (7) and the other only on the spin Hamiltonian. This
separation provides a rapid way to choose = for maximum cross-
peak intensity in a region of interest in the spectrum. For axial
HFI, the Hamiltonian-dependent term has only one maximum and
decreases to zero at the canonical orientations. For nonaxial HFI,
this term produces three separate ridges which outline the whole
powder lineshape. These three ridges have the majority of the
intensity in the HYSCORE spectrum. The intensity profile of each
ridge resembles that observed for axial HFI. Each ridge defines
two principal values of the HFI similar to the ridges from an axial
HFI.  © 2000 Academic Press
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INTRODUCTION

HYSCORE (hyperfine sublevel correlation) spectrosco

based on the four-pulse two-dimensional (2D) ESEEM exper-

R

iment (@) finds increasing application in the study of complex
paramagnetic centers where the unpaired electron intera
with a number of magnetically nonequivalent nucl2-18.
The basic advantage of the HYSCORE technique is the cr
ation of correlation cross-peaks in 2D spectra whose coorc
nates are nuclear frequenciesiy,, *v;) from opposite elec
tron spin manifolds 1, 19. The cross-peaks significantly
simplify analysis of congested spectra by correlating an
spreading out the nuclear frequencies.

We have demonstrated that another advantage of orien
tionally disordered (powder) HYSCORE spectra®f 1/2,
| = 1/2 spin systems is the visualization of interdependenc
betweenv, and vz belonging to the same orientations in the
form of the cross-peak contour projectidid). The analysis of
the contour allows direct determination of the (electron
nuclear) isotropic and anisotropic hyperfine interactions (HF
(12, 20. However, it is apparent from previous applications o
HYSCORE that complete understanding of its spectra do
require insight into the cross-peak lineshapes, particularly f
nonaxial HFl or when the anisotropy of the EPR spectrur
precludes the measurement of a HYSCORE spectrum from
possible orientations of the paramagnetic centers with respe
to the magnetic field. One should understand which orient:
tions of the paramagnetic species produce singularities in tl
2D spectrum and how the intensity is distributed between tt
nonequivalent {, +) and (+, —) quadrants of the 2D spec-
trum. The present work explores the intensities and shapes
cross-peaks in HYSCORE spectra for= 1/2,1 = 1/2 and
could be extended t& = 1/2, | > 1/2 systems with
negligible nuclear quadrupole interaction.

Both axial and nonaxial HFI are treated. The intensity profil
of cross-peaks in the powder spectrum is evaluated and sho
to be “bell”-shaped with zero intensity at the canonical HF
orientations and with a single maximum at some intermedia
orientation. While nuclear frequencies at canonical orientatior
Are not directly observable, their determination (and subs
quent evaluation of complete HFI tensor) is possible from

. ) . ) 5
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In the case of nonaxial HFI, three separate ridges are forme
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(v./v)

FIG. 1. Contour plot of cross-peak intensith;(term) in single-crystal HY SCORE spectrum fo= 1/2. The intensity; depends only on the dimensionless
coordinates &,/v,, vy/v) of the cross-peak. Positiver(v,) corresponds to thet(, +) quadrant of the spectrum and negativg/{,) to the (+, —) quadrant.

Each ridge indicates two of the three principal values of the, + v, = 2y, and |v, — vg| = 2v, in order to provide
HFI in the same manner as the ridges from an axial HFIl. Theseaningfulc®(s®) = 1.
findings provide a basis for rapid interpretation of HYSCORE The two nuclear frequencies, and v,;, may produce four

spectra. distinct cross-peaks in the HYSCORE spectrum. A pair C
peaks v, +vg) and (tv,; +v,) appears in the positive
THEORY (+, +) quadrant of 2D spectra and another paiis g, + )
in the other ¢+, —) quadrant.
Intensity of Cross-Peaks in Single-Crystal The intensity of a cross-peak can be written as

HYSCORE Spectra

A cross-peak in the HYSCORE spectra oba= 1/2,1 = fm =Kk-z2- |sin(wva7)sin(7rvﬁq-)|, [3]
1/2 electron-nuclear spin system is described in the time

domain by 21, 2

Y&l 23 wherez’ denotes eithec” for I, ,, in the (+, +) quadrant or

s® for l,.., in the (+, —) quadrant. The cross-peaks in the

(+, +) and (+, —) quadrants also have different phasess/2

X [c?cos 2m(v,ty + gty + v, 7/2) andv_1/2, respectively. However, HYSCORE spectra are- ust
+ ¢2C0S 2m(v,t, + vaty + v.7/2) ally represented in absolute Fourier transform mode, whic

hides the phase information. Therefore, we will not discuss tf

V(ty, ty) = k- sin(mv,7) * sin(mvgT)

— 5%€0S 2m (v t; — vgt, + v_7/2) phases below.
— Scos 2m(v,t, — vty + v_712)] [1] t It is convenient to consider the intensity as a product of tw
erms,

in the limit of complete excitation and nonselective detection,
where v, and v, are the nuclear (positive) frequencies from Los = 11 (el w1, vl 0) * (0,7, vp7), [4]
opposite electron spin manifolds, and are their linear ¢, *
vg) combinations;r, t;, andt, are times between first and ) ) ) ) )
second, second and third, and third and forth pulses, resp&&ich are functions of dmer;smnless_ variables. The firs
tively. The amplitude coefficienk = 4c?s?, is the product of €™M, i (v./v, velv) = k - 2%, describes the underlying
the formally allowed and forbidden EPR transition probabili"ténsity and depends only on the two nuclear frequenci
ties, with (v /v)) and @,/v)) expressed in terms of the Zeeman fre-
quency. The second, time-dependent tefafy,r, vy7) =
- _ ) |sin(mrv,7)sin(mv,T)|, is responsible for the blind spots in
62(s?) = i — 3 (ve * vp)7 (2] HYSCORE spectra and is a function of the dimensionles
VoVp ' parametersy, 7 and vy7. Such a presentation eliminates the
influence of the particular type of nucleus)(and the exper
where v, is the nuclear Zeeman frequency. In Eqg. [2], onlymental setup®) on the properties of HYSCORE spectra.
those values of,, andv, are allowed that satisfy the relations The Hamiltonian-dependent terhyi is directly determined-
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FIG.2. Ratiol */I of the cross-peak intensities in the (+) and (+, —) quadrants for a single-crystal HY SCORE spectrurh sf1/2 (shown as a contour
plot). The bold line represents (v, v,/v,) where intensity of cross-peak is equal in the two quadrantsl i.e=, | ~. The open circles lying on the dotted straight
line show the location in dimensionless coordinategy(, v,/v) for the three magnetic nucletd, *°F, *'P) whose actual frequency coordinates, (v;) are
coincident (see text). The ratiés/I ~ are indicated in parentheses for these three nuclei.

by the normalized cross-peak coordinategi,, v,/v,). Figure conditions. This leads to another useful property of HYSCOR
1 shows the variation of the cross-peak intensity in the{) spectra.
and (+, —) quadrants. The maximum intensity of 16/270.6 If two nuclei of the same isotope but with different hyperfine
occurs forc®> = 2/3 in the ¢+, +) quadrant and foc® = 1/3 tensors, for instance, two nonequivalent protons, have accide
in (+, —) quadrant. The maximum intensities are observed tally coincident frequenciesv’ = v? and vy = v¥), then
a rather narrow range of frequencies. For instance, the peh&ir cross-peak |ntenS|ty ratios will be equaF/I (v®,
intensity drops by half in the«, +) quadrant if either coor- v$’) = /17 (v, v{). This is true regardless of the actual
dinate is greater than 2. When either coordinate becon®s hyperfine tensors or the number of equivalent nuclei as long
the intensity is less than 10%. Reasonable intensities in tive pairs of frequencies coincide. On the other hand, if tw
(+, —) quadrant are found over a much broader range. Td#ferent isotopes (for instancéH and *'P or“’F) have iden
peaks in the €, —) quadrant reach a maximum intensity witttical frequenciesp!’ = v and v§’ = vJ, the cross- peak
either normalized frequeney2 and the intensity falls off more intensity ratios will differ,l /1~ (»%, v$%) # 1"~ (0, v¥).
slowly, dropping by only half for either frequeney3. This is because the cross-peaks, when scaled by the differt
This distribution of intensity betweent+(, +) and (+, —) nuclear Zeeman frequencies, map to different coordinates |
quadrants is governed by the rati&/s® (21). Figure 2shows the dimensionless plots /v, v4/v). This property is poten
the calculated ratia,”/I 7, in (v./v, v4/v,) coordinates! */I ~ tially useful for assigning a cross-peak whose origin is ambic
is unity for ¢® = 1/2, i.e, vi + v; = 4vf, which is a uous. One can measure the intensity ratitl - of the cross-
quarter-circle (bold line in Fig. 2). The cross-peak intensity igeak in the ¢, +) and (+, —) quadrants in an experimental
greater in the €, +) quadrant for} + v; < 4v7, but weaker spectrum and correlate that ratio to the dimensionless plot
for v2 + v; > 4vf. Thus, a cross-peak with’/I~ > 1 (or 17/1” in Fig. 2. For instancey!’ = v = ¥ = 22.35 MHz
| */1~ < 1) would indicate a nucleus withué greater (or less) andv’ = v§ = v’ = 14.9 MHz will map to the filled circles
than v2 + v;. This provides a simple method for assigningn Fig. 2 and give aratib’/| ~ = 1.67 for'H (v, = 14.9 MHz
cross-peaks to a particular type of nucleus according,to at 350 mT),1 /I~ = 1.22 for F (v, = 14.03 MHz), and
Note that ther-dependent term, is eliminated in the ratio | /1~ = 0.073 for*'P (v, = 6.04 MHz), which are sufficiently
/1", so that the ratio is independent of the experimentdifferent to identify the nucleus.
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A lines “a, b” of Fig. 3A. Forv, /v, = 1.27 (a), the maximum
®)vyy, =70 (@)vyv, =127 intensityl, = 0.97 isachieved ati,r = 0.43,v,7 = 0.55), or

z v = 0.5. However, for a cross-peak with significantly differ

ent frequencies and a higher ratigv, = 7 (b), one would use
e : s SRR a largerr corresponding to the third or fourth maximumIof

i i st ) : § 406 (v,7 = 0.36,v,7 = 2.5) or (v, = 0.5, v;7 = 3.5).

#10 Intensity of Cross-Peaks from Axial HFI in Powder
HYSCORE Spectra

For orientationally disordered samples, expression [1] mu
be integrated over the different orientations of the parama
netic species. For axial HFI, the orientation is defined by
single angley, relating the applied magnetic field direction to
the principal axis of the HFI tensor. Writing the nuclear fre-
quencies in the form

0 1 2 3 4
VT
B : Vap = Vlap) — Viap) " COSO + 17 5]
@vyv, =127 ®) vy, =7.0 emphasizes the unique mapping betweep, and 6. Here,
\ \ VH‘Y(B) = |_V| = (a + 2T)/2| andvm(g) = |_V| + (a. - T)/2|
1.0+ - are the nuclear frequencies at the canonical orientatibrs(
I / or 7/2) with the HFI described by its isotropic componeaj (
0.8 LA 7 and anisotropic tensor<T, —T, 2T). In powder spectra, the
; 4 H two nuclear frequencies,, vary in a correlated manner over
. 0.6 the entire interval betweem,, and v,,g. The one-to-one
z / | i mapping ofwv, to 6 in Eq. [5] produces a unique mapping
049 H betweenv, and v (20):
0.2
, vae = Qu@Vhw + Gae: [6]
0.0 p : . :
0 1 2 3 4+ With Qup = (T + 2a T 4»)/(T + 2a + 4r,) and G, =
Vgt +2v,(4v} — a®> + 2T? — aT)/(T + 2a = 4v), defining the

footprint or contour lineshape of the cross-peak in the 2I

dimensionless coordinates,, v,7). (B) Intensity profilel , along the dashed spectrum. Equation [6] shows that the cross-peak conto

lines on plot (A) which correspond to cross-peaks wighy, = 7.0 and 1.27. [0fMS @ smooth arc in powder 2D spectra between,4|,

Solid circles indicate a choice of optimafor maximum cross-peak intensity. |VH3(Q)|) and (Vm(/;)|, |Vm(a)|)- If Qup < 0, the contour is a

portion of an ellipse (circle i, = —1) with its origin at (0,

Figure 3A displays the second, time-dependent tégm, 7, 0)- If Qu > O, the contour is a hyperbolic segment. Wher

ve7), as a function ofv,r and vyr. When eitherv,t or vyr plotted against coordinates. and v;, the contours become

equals an integer value, the cross-peak intensity falls to zef§aight-line segments whose slope and intercept allow dire

an effect known as a blind-spo23). The time, 7, is an €stimation 0, andG,, and subsequently the isotropi)(

adjustable parameter in a HYSCORE experiment, and valu@¥d anisotropicT) HFI parametersl2, 20. Alternatively, the

of 7 corresponding to intensity maxima or minima for a peak &0ints where the straight-line segment intersects the cur

(v., vg) can be found from Fig. 3A. A straight line through théva_i ve| = 2v, are (V\\a_(/z>|l [Vigcl) and_ (viol [Vil), from

origin with a slope equal tov/v, traces out the relative Which one can determine the hyperfine tensid) (

cross-peak intensity as a function ef If the difference be-  Our aim is now to describe the variation of intensity alon

tween the frequencies is small so that their ratio is near unit€ contour arc. We start with the relation between the spect

the maximum cross-peak intensity occurs close to the fi@nsityS,, ., and the angular intensity distributidif6) in a

maximum ofl ,(v,t, v,7) atv,r = vyt = 0.5. As the differ random powder:

ence between frequencies increases and their ratio deviates

from unity, ther providing the maximum cross-peak intensity S dve=1(0) - sin 6 - do,

increases. Two examples of this strategy are presented in Fig.

3B. Here the intensity profiles ¢f are shown along the dashedbr, equivalentlyS,, ,, = 1(0) - sin 6 - |[d6/dv.|, wheredv, =

FIG. 3. Ther-suppression effect in HYSCORE: (A) Contour plotlgfin
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0 - [(dv,/d0)* + (dv,/d6)*]¥? is an element of the cross- A
peak arcl(0) = 1,. ,,(0) is the cross-peak intensity from Eq.
[4] with the explicit dependence on orientatiénand sing is

the statistical factor that accounts for the fact that more orien-

tations haved ~ /2 than6 ~ 0. Calculating the derivative,

— 2 2 H
|dvog/dO] = [viup — V7 aplSIN 0 COSO/v, 4,

one obtains vt 24
sin 6+ |do/dv|
VoVg
= (1,2 2 \2 2 2 2 \2 2"
cos6 - V(V““ —vi)° vg+ (VHH — Viﬁ) -2 (a) small

Using vjue — Viep = =3/2 T, the intensity profile of the

powder cross-peak becomes B
. 1.0
S;n vg =1 I(Valvla VB/VI) : IZ(VaT7 VBT)
X |3(VouV/3|V|1 a, T), [71 0.8 1 (a) small 1

where an additional term appears compared to the smgie 0.6
crystal result [4]:

0.4
I3(ve, vg; v, @, T)
0.2
B VaVg
3/2|T|-cos6- \;/(vHa-i- VM)Z'VIZ3+(V‘|B+ vm)z'vi' 0.0 . i i
0.2 0.3 0.4
(8] Va

FIG. 4. Ther-suppression effectin powder HYSCORE: (A) A powder arc
Equations [7] and [8] describe the intensity at,(v;) along the  ridge of the same arbitrary cross-peak is schematically represented (bold lin
top of the powder cross-peak ridge produced by the HFI [6}); small and larger values on a contour plot ¢f in dimensionless coordinate
The terml, has singularities for co8 = 0 andT = 0 which (v.7 vp7). (B) Intensity profilel , along the powder cross-peak ridge for small
are never observable because they occur whire 0. and larger.
To eliminate the apparent singularitieslgf we rewrite Eq.

7] in the following form: . . . .
[7] g to zero at the canonical orientations (see examples on Figs. ¢

and 8B). Such a bell shape is easily understood as determir

Svws = 1 1a(Vay vgy w1, 8, T) = 1w, wp7), [91  mainly by the numerator term ca- sin’6 in Eq. [10].
It is difficult to optimize 7 for maximum intensityl ,(7)
with along the entire powder cross-peak. The variatioh, @long a
cross-peak ridge for an arbitrary HFI is illustrated in Fig. 4A,
| 33(Ver v vy @, T) =17 13 where the same cross-peak is scaled for small (a) and large

values ofr. The two values are chosen for maximum intensity
= : ., [10] at the right or left end of the powder cross-peak. Figure 4
Vg \(Ve T V1) e+ (v + v.p) VY shows the intensity profile df, along the two ridges (a) and
(b). The largerr, produces a very distorted shape with cross
andz® = c¢*(s®) defined in Eq. [2]. The produdt; describes peak intensity completely suppressed at two different point
the “blind-spot-free” intensity of the powder cross-peak. Nudn the other hand, much of the intensity is lost near one of tf
merical simulations show that for all reasonable sets of HEtlges of the cross-peak for the smaller This example
parameters |@/v,| = 5, [T/v|| = 5) the cross-peaks have ademonstrates the necessity for 2D experiments to use seve
smooth shape with a single maximum and intensity decreasigigtinct 7 to enhance different regions of the extended powde

6|T| - viz%cos 6 - sin®0
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cross-peak. Cross-peaks from spectra at differeicin be phases, the spin packes summed at the time point t,)
assigned to the same HFI by overlaying spectra plotted irs  destructively interfere with each other in the suf@® -
v; coordinates12). This procedure reconstructs the blind-spote 27!tz (a2l | it will be shown below that modu
free contour. The optimat for any particular point along the lation intensity in the time domain vanishes excepttat ;)
powder cross-peak remains the same as for single-crygiaints where spin packets arrive with essentially the san
HYSCORE spectra (Fig. 3). phase, i.e., pi¢, t;, t,) = ph(t,, t,) independent orf). At
Our final step, however, is to analyze how the practicaliti¢kese time points, the packets are accumulated “in-phase” a
of data collection modify the features of HYSCORE spectqaroduce the maximum modulation amplitude fgc® -

that are formulated above. g "Zmlvatitrplatvatrg)ri2)y
_ For simplicity, we shall assume a local linear relationshij
Interference Effects in Powder HYSCORE Spectra betweenv, and v, at every orientatio). That is, we expand

HYSCORE spectra are obtained by absolute mode Fourferas & Taylor series im; and retain only the leading terms:

transformation of experimentally collected time-domain data.

Interference effects are often encountered when experimental v,(Q) = by v5(Q) + by [13]
observables are derived in such a fashion. An example very

close to this subject is the spin-echo phenomenon. Spin patkis assumption is allowed because the powder cross-pe
ets, precessing at different frequencies owing to inhomoggdge is only weakly curved [6]. Substitution of [13] into [12]
neous broadening, yield an observable signal, either immedives

ately after a single excitation pulse in the form of an FID or as

an echo when their phases are “refocused” by additional va(Q) - [byt, + t, + (by + 1)7/2]
pulses. There is no observable signal at all other times, because
each spin packet precesses with its own frequency, and the + bty + 7/2) = phity, tp),

total magnetization from the ensemble of spin packets with
different phases is vanishingly small on account of their inteyhich is true for allv,(€2) when
ference. It has not been widely appreciated that signals from

paramagnetic species with different orientations can interfere b.t,; +t, + (b, + 1)7/2 = 0. [14]
with each other in powder HYSCORE and alter the observed
spectral intensity. Equations [13] and [14] establish the relationship between tt
Equation [1] for 2D HYSCORE of ah = 1/2 nucleus can frequency domain and time domain in the powder HYSCOR
be conveniently rewritten in the form spectra. Each linear segment [13] of a cross-peak in the “ides
frequency domain produces a signal along a straight line [1:
V(ty, tp) o (c?- (g " #rlratatwstetbratug)r/2) in the time domain.

4 ezttt et 12) | ) Figure 5 illustrates this consideration. Here “idealized” 2C
spectra (left) are constructed from a segment of the powd
— g2 (g 2mlatimvptat (vamvp)7/2) cross-peak ,, v;) approximated by a straight line [13] (the

coefficientsb, and b, are in the figure legend). The mirror
cross-peaksif;, v,) and (—v,g, —vgy) corresponding to the

o , __other terms of Eq. [11] are also added. On the right side of Fi
where c.c. indicates the complex conjugate of the previolsq ¢ rresponding idealized time domains are shown calc

terms, and..), the powder average over different orientationgyioq py the inverse Fourier transformation. The time-domai

() of the external magnetic field. One can consider only the fifgho gty is concentrated along two crossed lines. One of the
terme ¥tz e )T of Eq. [11] without loss of gener |

. o nes is described by [14], and the second line corresponds
ality, because each term produces a distinct peak that neyge: exchange of, andt,:

theless is subject to similar considerations.

The first term corresponds to cross-peakv(, +v;). Both
v, (€2) vary on() producing an extended cross-peak ridge in
the powder spectrum whose profile is described by Eq. [6].

Importantly, not only the magnitude® but also the phase ~ from the mirror cross-peakwf, v.). The signal is rapidly
attenuated away from the lines [14, 15]. The more distant,a (

+ e*i‘Zﬂ'(Vatz*V3t1+(V“*V5)T/2) + C.C.)>Q, [ll]

bty + t, + (b, + 1)7/2 =0 [15]

_ t,)-point from the lines, the stronger the suppression. Quant

h(Q, t;, t,) = v (Q)t;, + )t 2 . . ; . . L
PRI, b, 1) = v (D)t + v, tatively, the width of the in-phase lines in the time domain i
+ (v,(Q) + vp(Q))7/2 [12] inversely related to the length of the cross-peak in the fre

quency spectrum~1/[(v,, — vy)* + (vs. — vg)"% The
varies for each set ofv((Q), v4({2)). Because of different modulation intensity decays along the in-phase lines as tl
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FIG.5. Interference effects in the powder HYSCORE. The time-domain plots (right side of each pair) were obtained by direct inverse Fourier transfor
of the corresponding frequency-domain spectra (left). Only the light areéa (+t,) in the time domain is measurable in the experiment. (A-D) Four differer
situations for powder cross-peaks in the 2D spectrum (see Eq. [13])b(Ap() = (+0.27,—-0.7), (B) (+0.2,+0.7), (C) (-0.41,-0.7), (D) (+0.22,+0.3).

inverse of the cross-peak width in the spectrum. Thus, #émd (—, —) quadrants but now are nearly parallel to the mait
recover the idealized spectrum, it is necessary and sufficientiagonal p, > 0). The change of orientation leads to a
measure just the lines in the time domain. relocation of the straight lines to thec¢,, +t,) quadrants in
The four pairs of frequency and time-domains shown in Fi¢he time domain. The idealized time domains in Fig. 5 exten
5 represent the four different powder cross-peak orientatiomger both positive and negative timgsg,. However, only the
which are typical in a 2D spectr&2€19. In Fig. 5A, the upper right quadrant of the time-domain pattetn,> 0, t, >
cross-peaks are located in the,(+) and (—, —) quadrants and 0), has a physical meaning and is measurable in an experime
their orientation is roughly perpendicular to the main (positivelhe other three quadrants (shaded in Fig. 5) are eterna
diagonal of the 2D spectrumb( < 0). The corresponding inaccessible. It becomes clear that cross-peaks of nearly p
time-domain signal (Fig. 5A, right) appears in thet¢, +t,) allel orientation (Fig. 5B) should be strongly suppressed in re
and (—t,, —t,) quadrants as two lines in accordance with Eqspectra because their signals fall predominantly in the unme
[14] and [15]. In Fig. 5B, the cross-peaks are still in the (+) surable (-t,, *t,) quadrants, and only shallow traces leak intc
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FIG. 5—Continued

the (+t;, +t,) quadrant. On the other hand, cross-peaks withe b, > 0 orientations dominate experimental spectra, an

perpendicular orientation (Fig. 5A) are readily detectable. b, < 0 cross-peaks are suppressed (Figs. 5C and 5D). T
Opposite results are found for cross-peaks in tie ¥) influence of interference on cross-peak intensity in powde

quadrants of the 2D spectra (Figs. 5C and 5D). Considering tH¥ SCORE spectra is summarized in Table 1.

term (e "Frletireletemr)2)y gnd taking the same linear Generalization of the straight-line approximation to the ree

relationship [13] betweenm,, frequencies, one arrives at twocross-peak shapes [6] is straightforward. Since each cross-pe

straight lines in the time domain: is a smooth arc, every local segment can be approximat

piecewise by a linear relation with sloje(6):

bltl - t2 + (bl - 1)7/2 = 0, d
VE!
byt, — t, + (b, — 1)7/2 = 0. [16] b,(6) = dv, (0) = Q.- vylv,.

In contrast to the £, =) cross-peaks considered above, nowhe frequencies,g are by convention positive values, there
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TABLE 1 l4(Qup)
Influence of Powder Interference Effects on Cross-Peak )
Appearance in 2D HYSCORE Spectra 1 (+, +) cross-peak witlQ, < 0, and
B (+, —) cross-peak withQ,z > 0
Cross-peak b, >0 b, <0 b, =~ 0 or 10 (+, +) cross-peak witlQ, >0, and
allocation (Q. > 0) (Q. < 0) by — e (+, —) cross-peak withQ 5 < 0.
(+, +) Quadrant Suppressed Allowed Strongly affected [18]
(+, —) Quadrant Allowed Suppressed Strongly affected

This completely suppresses the cross-peak intensity in o

quadrant [,(Q.) = 0) but leaves the intensity unaffected in
fore the sign ot,(6) is solely determined by the ter@, = the other (,(Q,) = 1). Simulations in Fig. 8llustrate the
(T + 2a — 4v)/(T + 2a + 4v)). Although the magnitude approximation. The cross-peak intensity (solid) taken as
varies,b,(0) retains its sign along the entire cross-peak, froskyline projection of simulated HYSCORE spectra is com
0 = 0 to@/2. HenceQ, is the only parameter that determines
cross-peak appearance in a 2D spectrum. Figure 6A shows the
regions ofQ, > 0 andQ, < 0 in the coordinatesI{v,, a/v,).
For the crosshatched regid@, < 0 and hencé,(0) < 0 for
all the (A6),-segments of the entire cross-peak. In accordance
with Table 1, eachX6),~segment and thus the entire cross-
peak produced by the nucleus with hyperfine parameters from
this region will be observed in the+, +) quadrant and
supressed in«, —). For HFI parameters from the dotted
regions,Q, > 0 andb,(6) > 0, and the cross-peak behaves
in the opposite fashion. Figure 6B shows a similar plot for
single-crystal HYSCORE spectra where the intensity is distrib-
uted according to the®:s® rule: for smaller hyperfine interac
tions the greater intensity is found in the (+) quadrant but
for larger interactions the intensity found in the,(—) quad-
rant. While thec?:s? ratio is still relevant in the powder case,
interference effects become the dominating factor and can
completely suppress the cross-peak intensity in one ofthe (
+) or (+, —) quadrants, regardless of the acta&ls® ratio.

Figure 7A presents a single-crystal HYSCORE spectrum

calculated forv, = 1 MHz,a = 2 MHz, T = —2 MHz, and
0 = 65° (the parameters are marked with solid circles in Figs.
6A and 6B). As predicted, the ratld < |~ is observed in the
spectrum, following the theoretical®:s> = 0.256. Single-
crystal simulations for other orientatiosfollowed the same
relationshipl © < 1~. The powder spectrum simulated with the
same parameters (Fig. 7B) has, however, the opposite intensity

ratiol” > |~. The intensityl = vanishes in powder spectrum ™,
due to interference, and only a few weak features can be
discovered. FIG. 6. (A) Graphic presentation of the cross-peak appearance in powd

YSCORE spectra @, > 0 andQ, < 0” rule). For the parameterd{v,,

v,) of the central (crosshatched) regio@ (< 0), the cross-peak is only
detected in the+{, +) quadrant, and for the parameters of the dotted region
(Q. > 0) the cross-peak intensity is only observed in the {) quadrant. (B)
Graphic presentation of the cross-peak intensity allocation in single-cryst

Sove = 1 13(va, vgi v, @, T) = Ly(ve1, v57) * 14(Qqup). HYSCORE spectrum s> rule). For hyperfine parameters/v,, a/v,) in
the central (crosshatched) region, the most cross-peak intensity lies it the |
[17] +) quadrant of 2D spectra, i.d.; > |~ for any orientatiors of the axial HFI
tensor relative to the external magnetic field. The reverse<( 1) is true for
hyperfine parameters in the dotted regions. Unmarked regions represent
. . parameters for which ratio of the cross-peak intensity in the<) or (+, —)
However, interference effects can be approximated by a Si@Radrant varies witd. The parameters used in the simulations of Figs. 7, 8A
function, equal to 1 or 0 depending on the signQf: and 8B are marked with solid circles on the graphs.

We have not been able to explicitly derive the interferen
term |, that would describe the cross-peak intensity in
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FIG. 7. Single-crystal (A) and powder (B) HYSCORE spectra fromlaa 1/2 nucleus with the hyperfine parameters€ 1 MHz,a = 2 MHz, T =
—2 MHz) marked with solid circles on the graphs in Figs. 6A and 6B. An orientation,65°, for the axial HFI tensor relative to the external magnetic fielc
is assumed in the single-crystal simulation.

pared to the idealized interference-free intensity predicted with, — «), one of the lines [14], [15], or [16] in the time
[10] (dashed lines). The intensitiés in Fig. 8A andl ~ in Fig. domain lies nearly on thg axis and the other on the axis.
8B are well reproduced, so thB{Q,) = 1 would be a good Considering that the «t,, +t,) quadrant is the only one
approximation. But only a few weak features are seen in tlbservable in the experiment, it becomes clear that the cro:
region of the strongly suppressed lines in the opposite quaekak intensity in both thet, +) and the ¢, —) quadrants will
rants,| ~ in Fig. 8A andl " in Fig. 8B. These features cofre be affected near these special cases. For finithe pairs of
spond to nuclear frequencies ., near the perpendicularlines [14], [15], or [16] intersect at negative timas € —7/2,
orientation of the magnetic field, which are the only ones = —1/2), Fig. 9,and the measurable portion of signal in the
remaining from the entire powder cross-peak. The effect ré+t,, +t,) quadrant is partially or totally lost. One can think
sembles that described for the dead time distortion of tloé the r-shift as an additional dead timeé,{,; = 7/2) in both
powder lineshapes in 1D ESEEM spect?d)( dimensions.

Two special casedy; ~ 0 andb, — o, mark the bound Interference is not specific to tf&e= 1/2,1 = 1/2 system
aries in the approximation [18]. These are known as the Bdt is a general feature of 2D spectra from nuclei of arbitrar
singularity in 1D ESEEM spectroscopy wheig,|=|v..| spin. The HYSCORE spectrum from nuclear spitan be
and eitherv, or v, is orientation independent. With, ~ 0 generally described by2b)
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FIG. 8. Comparison of theoretical profiles for the powder cross-peaks calculated analytically using [10] (dashed lines) with sky-line profiles in sim
HYSCORE spectra (solid lines). The parameters were 1/2, v, = 1 MHz, (A) a = 2 MHz, T = —2 MHz, (B)a = 2 MHz, T = 1 MHz. The positive
frequency corresponds to cross-peak intensity+in ) quadrant and negative in-( —) quadrant. The spike at 1.73 MHz in the intensity profile (A) is due

to the intersection of the two cross-peak ridges.
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FIG.9. Ther-shift effectin powder HY SCORE experiment. The two straight lines of maximum modulation signal ([14], [15], or [16]) are shifted to neg:
times on (B) to make an intersection at & —7/2,t, = —7/2). Only the light area{t,, +t,) is detectable in HYSCORE experiments.
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V(ty, ty) The general relatioss,, ,, -+ dv, - dv, = 1(6, ¢) - sin 6 -
do - do for cross-peak intensity can be written using the

o A i2m(vaiti+ vgita+ (vait vp) 7/ 2) .
2 (ke Jacobian form,

+ k"itje—i~2'n'(vﬂit2+Vﬁjt1+(vai+vm)‘r/2) + C.C.
+ (l i' je*i'27T(Va|t1*th2+(Va|*V;sj)T/z) ’

+ ITyje*i~277(11m12*VBIt1+(Vm*VBJ)T/Z) + c.c. o S _ |(9 (P) - sing- ‘M‘ with
Ve VB ’ d(vy, vgl’
where the sum is taken over the different nuclear frequencies v, ovg | *
v, andvg from opposite electron spin manifolds. In contrast a(0, @) 90 90
to thel = 1/2 case [11], the amplitude coefficietts(l; ;) are ‘a(vwvﬁ) ~ | av, dvg
complex values with initial phases gt{) and ph(;;) which e 0o

influence the time-domain signal:

Thus one obtains
ph(€2, t;, t) = v, (D)t + vg(Q)t,

+ (v6i(Q) + v(€Q))7/2 + phlk(l); ;). v+ 2X(8%sin%2¢p + (3 + 8 COS 2p) %c0S0)

=

vt §+T+(9— 8% - v,vg-Sing-CcoSe - CcoSH

In the linear segment approximation,;(2) = b, - v4(Q) +
b,, the time-domain signals have the same phase at X op(v,T, vg7), [21]

bit; + t, + (by + 1)7/2 + ph(k(l); )/ve(2) = 0. [19] where again the second term describes the blind-spot effect
is omitted in further discussion. There are apparent singulal
which differs from the = 1/2 case [14] by pH((l),;)/v4(€). ties in the cross-peak shape in Eq. [21]. They occur when ol
The latter term is orientation dependent and therefore th&the following conditions is met: sigp = 0, cose = 0, or cos
location the observable time-domain signals is not obvious.ft= 0, that is for the magnetic field perpendicular to a principa
is clear, however, that this term becomes negligible at larga¥is of the HFI tensor. The singularities can be easily unde
timest,,, So that [19] approaches the straight libgt, + t, + stood from the second form of Eq. [20]. For those orientation
const= 0, similar to [14]. Therefore, one would expect that thwith the same angle, both v and v; vary as cos 2. Thus,
lines of maximum intensity in the time domain are located i = 0 ande = /2 are stationary points far, and v, so that
the same manner as in the= 1/2 case and the samemany orientations have co®2 +1 and contribute to spectral
qualitative description of interference effects should apply iftensity at the extreme value of and vy, for that value off.
the frequency domain (see Table 1). Numerical simulatiodmilar turning points occur along the entire length of each c
and experimental HYSCORE spectra frors 1 (3, 9, 13, 3/2 the three boundary arcs for the cross-peak.
(14, 15, and 5/2 ) nuclei support this qualitative conclusion. The powder cross-peaks have a horn shape for nonaxial H
(20). The three arcs corresponding to gis= 0, cose = 0, and
Cross-Peak Intensity in the Case of Nonaxial HFI cos® = 0 bound the range of possible frequencies for that HF

and are also the conditions for the singularities in Eq. [21

Nuclear frequencies for a nonaxial hyperfine interaCtiOPherefore one expects the outlines to be the most inten
depend on the polas) and azimuthal¢) angles that relate the features in the spectrum. The outlining arcs are described |

magnetic field orientation to the HFI principal axis system, Eq. [7] with a different definition for theQ., and G

. s o parameters (Table 2).
Ve = Vaa@COS 0 + v, psin6 - sin“e Figure 10 shows two spectra, each simulated for one nucle
+ vfa(ﬁ)sinze - cog with nonaxial HFI tensor. As expectgd_, the spect_ra are dom
nated by the three separate arcs outlining the entire horn she

Vf(,q;) + V§a<3> of the powder cross-peak (shaded). A significant aspect of bc

= VupCOS0 + 2 " sin’ spectra is the distribution of the arc ridges between the)
) ) and (+, —) quadrants. The powder interference effects result i
L Vxe® ” Vyap) Sin%6 - cos 2, [20] only ridges with negative values foR:s, Qulsy OF Q_ﬁ{ﬁ)
2 (Table 2) appearing in theH, +) quadrant and only ridges
with positive values appearing in the-( —) quadrant.
wherev,,g = —v, = (a + 2T)/2 and vy = — v = The intensity profile along each outlining cross-peak arc ce

(a — T(1 = 8))/2 are nuclear frequencies at the cabe obtained from Eq. [21] by substituting sin= 0, cose¢ =
nonical orientations of the HFI tensor—[T(1 + &), O, or cos® = 0. The singularity term is transformed from
-T(1 — &), +2T]. angular to frequency coordinates as
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TABLE 2
Arc Shape and Intensity Profiles for the Outlining Arcs of Powder Cross-Peak in the Case of Nonaxial HFI
in HYSCORE Spectra for S = 1/2, | = 1/2

Powder arc “Ideal” intensity profile along the ard,;
(singularity) Arc shapeyiy) = QupViwT Gup (z2 = ¢*(s”) and defined in [2])

6|T| - v2z%cosH - sin?0

Vja®) T Viap) VeVip T VjpVia

Axial HFI = - G p=—2 22 2 2 y2,2°
Qo Vig@ T Vi@ e M e T Vi VaVs \(V”“;r V“)zvﬁ (g + VZLB) Ve
where vy = 1f,CoS 0 + 17 ,psin’0
Nonaxial HFI
. N vi2. 22 sin 20 3456
. _ Vza(/j) an(B) VzanB VZBan . y
ZX-plane (sing = 0) Q(Z:((G) i r— G(Z:((B) = =2 o T o Cvi(vzﬁ + Vxﬁ)2 + Vé(llm + vy,)? \48(3 — 8)
Vzg(a) T Vxpla) Vg T Vxpla) h 2 _ 2 2 2 2
Where vyg = VzECoS 0 + vigg SN0
3/2 2 ;
Ve z%-sin 26 3-5
_ Vaa(p) + Vya(p) VaVyp T Vzplya : ,
ZY-plane (cosp = 0) Qg =— i Gy = —21- T ‘\“vﬁ(yzﬁ + vye) 2+ vE(vy + vy) 2 \J4S(3 + )
2B(a) yB(a) 2B(a) yB(a) h 2 2 20 + p2 L2
where vl = v2,,C050 + vi,pSin‘o
3/2 2 P
viez%-sin 2¢ 26
_ Vya(p) T Vya(p) VyaVyp T VxgVya . ,
XY-plane (cost = 0) Qi = — m Gllg = —2v- m C/Vi(vxﬁ + )%+ Vfa(an + vy ? V2(9 — 82)
whereviy = vi,pCoSe + viysine
1 1 nd(3—8)-Tsing resembling what would result from three (nonequivalent) axi

nuclei having principal values in common with each other. Ii

sine]  JAp [(ve+ v 202 + (v, + vyo) 23] %% - : S
[sin ¢ VAv [z + vg) (v, ) Vil addition, the powder interference effects will distribute each ¢

1 1 y1d(3+8)-Tsino the three outlining ridges between the two quadrants of the 2
|cos ¢ - \/B. [(vy + vyp) 202 + (Vi + 1ye) 03] % spectra (Fig. 10) to further complicate interpretation. Howeve

in av’vsv; plot, the ridges become straight lin&9f and each
1 1 V(9 —283)/2-T pair of oulining ridges should intersect|at, = v,| = 2v,. This
[cos 6] - V@' [(vys + yyB)zyi + (vyy + Vya)zyg]o-%' is the mosF direct indication for the ridges produced by a sing|
nucleus with nonaxial HFI.
[22] We now consider the relative intensities of the three ridge
of nonaxial cross-peaks. If the hyperfine interaction is wegk (
where 18/Av would result from integration of the square-root> |a|, |T|), thenc? ~ 1 ands? ~ 0 for all three ridges, and
singularity when some homogeneous broadening of the intiey appear mainly in theH, +) quadrant. The denominators
vidual spectral components is introduceéd; can vary across in |;; have roughly the same magnitude for all ridges. As .
the spectrum depending on the precise nature of the broadenissult, the relative intensities of the ridges are determine
but will be assumed to be constant for the purpose of discuslely by the rhombic parameter:
sion. Substituting [22] into [21], one derives the intensity

profiles along the length of the outlining ridges: SRS = (3 + §)Y2(3 — §)3%(28)%2, [24]
+ 1 + H
vy = " | 13(ve, vg v, &, T, 8) and vary from 1:1:0 for _nea_rly aX|a! HFb(~ 0) to 2.8:1:1 fgr
\ a purely rhombic hyperfine interactiod € 1). The same ratios
X 1y(ve7, v57) * 14(Quip), [23] are obtained for the case of strong isotropic HFI couplifag (

> v, |T|); however, all ridges appear in the-( —) quadrant

wherel, andl, are the blind-spot and interference terms, arl@”® ~ 0 ands® = 1).
| ;3 is “true” intensity shape. The latter are collected in Table 2
for each of the outlining ridges. CONCLUSIONS

All three edges have smooth shapes similar to those found
for axial HFI [10]. The arc has a single maximum along its The analysis presented here extends the theoretical treatm
length and falls to zero at the canonical orientations. Becausfe cross-peaks in powder HYSCORE spectralof 1/2
each of the outlining ridges has an intensity profile similar toucleus started previousiylZ, 20. Cross-peaks form well-
that for the axial HFI case, which is described by Eq. [7], thetefined ridges (arcs and horns) in 2D spectra which allo
one nonaxial nucleus produces a cross-peak pattern closatgurate estimation of isotropic and anisotropic hyperfine p



INTENSITY OF CROSS-PEAKS IN HYSCORE SPECTRA 241

I F1:{MHz]

F2:[MHz] -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0

AN VRN

B

I F1:[MHz]

T T T T T T 0.0
F2:{MHz] -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0

FIG. 10. Simulated powder HYSCORE spectra fromlas 1/2 with nonaxial HFI: (A)y, = 1 MHz,a = 2 MHz, T = —1 MHz, 8 = 1, and (B)v, =
1 MHz,a= 15 MHz, T = -0.75MHz, 6 = 1.

rameters. In the present work we concentrate on the intensitiess and outline the whole horn shapes predicted for nonaxi
and shapes of those ridges. A new feature of powder 2FIl. These ridges provide a convenient basis for rapidly eva
spectra, the suppression of some ridges by interference effeatjng the entire hyperfine tensor.

was discovered. Interference leads to suppression in one of the
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